71 research outputs found

    On reflection and transmission of p- and Sv-Waves phenomena at the interface between solid-liquid media with magnetic field and two thermal relaxation times

    Get PDF
    In this research, we studied the reflection and transmission of thermoelastic wave at a solid-liquid interface under influence of two thermal relaxation times and magnetic field. The governing equations are introduced taking into consideration Green-Lindsay theory and Maxwell's stresses. After solving the governing equations, we found the two reflections and transmission coefficients of incident p-(primary) and SV- (Shear Vertical) waves in the presence of thermal relaxation times and a magnetic field. The boundary conditions at the interface have been applied. The appropriate expressions to find the amplitude ratios for the two incidence waves (p- and SV-waves) have been obtained. A numerical calculation is made for the reflection and transmitted coefficients of the incident waves, in which we study the effect of thermal relaxation times and magnetic field. The results obtained are presented graphically for the effect of magnetic field and relaxation times to display the phenomena physical meaning

    Mathematical modelling of Stoneley wave in a transversely isotropic thermoelastic media

    Get PDF
    This paper is concerned with the study of propagation of Stoneley waves at the interface of two dissimilar transversely isotropic thermoelastic solids without energy dissipation and with two temperatures. The secular equation of Stoneley waves is derived in the form of the determinant by using appropriate boundary conditions i.e. the stresses components, the displacement components, and temperature at the boundary surface between the two media are considered to be continuous at all times and positions . The dispersion curves giving the Stoneley wave velocity and Attenuation coefficients with wave number are computed numerically. Numerical simulated results are depicted graphically to show the effect of two temperature and anisotropy on resulting quantities. Copper material has been chosen for the medium and magnesium for the medium Some special cases are also deduced from the present investigation

    Effect of heat and mass transfer and rotation on peristaltic flow through a porous medium with compliant walls

    Get PDF
    Purpose: The purpose of this paper is to investigate the peristaltic flow of an incompressible Newtonian fluid in a channel with compliant walls. The effects of rotation and heat and mass transfer are also taken into account. The governing equations of two dimensional fluid have been simplified under long wavelength and low Reynolds number approximation. An exact solutions is presented for the stream function, temperature, concentration field, velocity and heat transfer coefficient. Design/methodology/approach: The effect of the concentration distribution, heat and mass transfer and rotation on the wave frame are analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation and heat and mass transfer. Findings: The results indicate that the effect of the permeability and rotation are very pronounced in the phenomena. Originality/value: The objective of the present analysis is to analyze the effects of rotation, heat and mass transfer and compliant walls on the peristaltic flow of a viscous fluid

    Magnetic Field and Gravity Effects on Peristaltic Transport of a Jeffrey Fluid in an Asymmetric Channel

    Get PDF
    In this paper, the peristaltic flow of a Jeffrey fluid in an asymmetric channel has been investigated. Mathematical modeling is carried out by utilizing long wavelength and low Reynolds number assumptions. Closed form expressions for the pressure gradient, pressure rise, stream function, axial velocity, and shear stress on the channel walls have been computed numerically. Effects of the Hartmann number, the ratio of relaxation to retardation times, time-mean flow, the phase angle and the gravity field on the pressure gradient, pressure rise, streamline, axial velocity, and shear stress are discussed in detail and shown graphically. The results indicate that the effect of Hartmann number, ratio of relaxation to retardation times, time-mean flow, phase angle, and gravity field are very pronounced in the peristaltic transport phenomena. Comparison was made with the results obtained in the presence and absence of magnetic field and gravity field

    Thermal Radiation and MHD Effects on Free Convective Flow of a Polar Fluid through a Porous Medium in the Presence of Internal Heat Generation and Chemical Reaction

    Get PDF
    An analysis is presented to study the MHD free convection with thermal radiation and mass transfer of polar fluid through a porous medium occupying a semi-infinite region of the space bounded by an infinite vertical porous plate with constant suction velocity in the presence of chemical reaction, internal heat source, viscous and Darcy's dissipation. The highly nonlinear coupled differential equations governing the boundary layer flow, heat, and mass transfer are solved by using a two-term perturbation method with Eckert number as a perturbation parameter. The results are obtained for velocity, angular velocity, temperature, concentration, skin friction, Nusselt number, and Sherwood number. The effect of various material parameters on flow, heat, and mass transfer variables is discussed and illustrated graphically

    Effects of Rotation and Gravity Field on Surface Waves in Fibre-Reinforced Thermoelastic Media under Four Theories

    Get PDF
    Estimation is done to investigate the gravitational and rotational parameters effects on surface waves in fibre-reinforced thermoelastic media. The theory of generalized surface waves has been firstly developed and then it has been employed to investigate particular cases of waves, namely, Stoneley waves, Rayleigh waves, and Love waves. The analytical expressions for surface waves velocity and attenuation coefficient are obtained in the physical domain by using the harmonic vibrations and four thermoelastic theories. The wave velocity equations have been obtained in different cases. The numerical results are given for equation of coupled thermoelastic theory (C-T), Lord-Shulman theory (L-S), Green-Lindsay theory (G-L), and the linearized (G-N) theory of type II. Comparison was made with the results obtained in the presence and absence of gravity, rotation, and parameters for fibre-reinforced of the material media. The results obtained are displayed by graphs to clear the phenomena physical meaning. The results indicate that the effect of gravity, rotation, relaxation times, and parameters of fibre-reinforced of the material medium is very pronounced

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Generalized Thermoelasticity with Diffusion and Voids under Rotation, Gravity and Electromagnetic Field in the Context of Four Theories

    No full text
    In this paper, we investigated a new mathematical model on effect of the diffusion with voids in generalized thermoelastic half-space with electromagnetic field, gravity field, and rotation. The model is formulated in the context of four thermoelastic theories; Classical (CT), Lord Shulman (LS), Green Lindsay (GL) and Dual-Phase-Lag (DPL) models. The boundary conditions on the surface applied to obtain the enclosed expressions for the displacements, temperature, stresses, concentration of diffusion and volume fraction field in the physical domain using the normal mode method. A comparison will be made for the results obtained in the presence and absence of the new considered variables and displayed graphically. We shall compare the results in the context of the new mathematical model with the previous results obtained by others to ensure the quality of the model and show the physical meaning of the phenomena. Finally, we shall make simulation with Geologists and Petroleum Engineers to show the useful and applications of the new model and generalize the results for the new mathematical model obtained

    Electromagnetic Field and Rotation Effects on S-waves Propagation in a Non-homogeneous Anisotropic Incompressible Medium under Initial Stress and Gravity Field

    No full text
    In this paper, shear waves propagation in a non-homogeneous anisotropic incompressible medium under influence of the electromagnetic field, gravity field, rotation and initially stressed medium has been studied. Analytical analysis reveals that the velocity of propagation of the shear waves depends upon the direction of propagation, the anisotropy, magnetic field, rotation, gravity field, non-homogeneity of the medium, and the initial stress. The frequency equation that determines the velocity of the shear waves has been obtained. The dispersion equations have been obtained and investigated for different cases. In fact, these equations are an agreement with the corresponding classical results when the medium is isotropic. The results obtained are discussed and presented graphically. The results indicate that the effects of gravity field, initial stress, magnetic field, electric field, non-homogeneous, anisotropy and rotation are very pronounced
    corecore